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Institute of Nuclear Physics, 630090, Novosibirsk, USSR 

Received 29 April 1988 

Abstract. The statistical properties of the quasi-energy spectrum in a simple quantum 
model are investigated for the case when the corresponding classical system is fully chaotic 
while quantum chaos is restricted by the localisation effects. It is shown that the level 
spacing distribution depends effectively on some parameter which is the ratio of the 
dimension of the eigenfunctions (mean localisation length) to the total number of the 
quasi-energy levels. Numerical data for a wide range of parameters of the system are given. 

1. Introduction 

The problem of properties of quantum systems whose classical counterparts reveal 
chaotic motion is still attractive for many scientists. One of the most important results 
in this field is the close relation between the spectral properties of quantum chaos and 
those of random matrices of certain symmetry [l-51. This relation is far from being 
trivial if only for one reason: the quantum systems under consideration have no random 
parameters. Nevertheless, numerical experiments have shown that random matrix 
theory (RMT) can be successfully applied to describe statistical properties of the energy 
[4] (or quasi-energy [5]) spectrum as well as the chaotic structure of the eigenfunctions 
[6 ] .  Specifically, the spacing distribution P( s) of nearest-neighbour levels for such 
systems is described with high accuracy by a simple Wigner-Dyson supposition [ 7-91: 

P ( s >  = AsP exp(-Bs2) (1) 
where A and B are normalising constants, and /3 is a parameter depending on the 
symmetry of the system and characterising the repulsion between neighbour levels. 

On the other hand, the so-called quantum localisation was discovered which can 
strongly supress chaos in a quantum system compared with a classical one [ 10,111. 
Such a localisation is analogous to the Anderson localisation in solid state physics 
but, in principle, is different because of the strongly deterministic nature of the system. 
As a result, it turns out that maximal quantum chaos appears under certain conditions 
when all eigenfunctions (EF) are random and fully extended (delocalised) in the 
restricted phase space of the system [ 5 , 6 ] .  It is clear that such a situation corresponds 
to the case of perturbation strong enough to cover all unperturbed states. Nevertheless, 
another case of so-called ‘intermediate’ quantum chaos is possible which is charac- 
terised by localised chaotic states of the system [ 121. 

In this paper we study the spacing distribution P ( s )  of nearest-neighbour levels 
taking into account the finite length of localisation of chaotic EF. Up until now much 
attention has been paid to the properties of quantum chaos. Nevertheless, correlation 
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between the rate of quantum localisation and the statistical properties of the spectrum 
(see also [13, 141) has not been investigated sufficiently. 

It should be noted that the Berry-Robnik approach [15-171 to describe the spacing 
distribution P( s) concerns a completely different situation for which the corresponding 
classical system is not fully chaotic and the deviation P ( s )  from the Wigner-Dyson 
dependence (1) is caused by the existence of stable regions in phase space. It is known 
that in the other limiting case of completely integrable classical systems the level 
spacing distribution of quantum systems is very close to Poissonian P ( s )  - exp(-s) 
(for generic systems see [18-201). For this reason the intermediate statistics in [15-171 
is considered as the sum of two types of distribution (Poisson and Wigner-Dyson) 
depending on how the phase space of classical systems is divided into regions with 
stable and chaotic motion. 

2. The kicked rotator model on the torus 

Let us consider the well known kicked rotator (see e.g. [lo, 111) 
a2 

8 , ( t ) =  s ( t - m T ) .  
A h2 a2 

H = - - - + E C O S  es,(t) 
21 ae m=-m 

It is convenient to describe the motion of such a system by the mapping for the + 
function after one period T of perturbation 

Th a2 
(3) 

It is written in a symmetric form where the + function is determined right in the middle 
of a free rotation, between two successive kicks. It is clear from (3) that the behaviour 
of the system depends only on two parameters: r= AT/I and k= ~ / h .  It is known 
[21] that the corresponding classical system (the so-called ‘standard mapping’) has 
strongly chaotic motion under the condition K = kr >> 1. 

According to numerical data (see e.g. [lo, 111) the quantum model (2), (3) imitates 
(under the additional condition k >> 1 which means a large number of unperturbed 
levels covered by one kick) such a rough statistical property as the diffusion of energy 
in time and relaxation of the distribution funcQn in momentum space. But it occurs 
only for some time t % t* after which the quantum interference effects start to influence 
more and more. As a result, for t 3 t* classical diffusion is suppressed (and eventually 
stops (for generic irrational values ~ /47 r ) ) .  It was established [ l l ,  121 that this time 
t*, corresponding to the classical diffusion (Ec ,  = Dt/2), is determined by the rate of 
diffusion: t * =  D- k2. The mechanism of this interesting effect is caused by the 
localisation of all eigenfunctions in unrestricted (infinite) momentum space of the 
system. The mean localisation length I D  of the EF, as was shown in [ 11, 12,221, is 
related to the classical diffusion coefficient D by 

D k2  
2 4  

lD=-=-. (4) 

For model (2), (3) the level spacing distribution P ( s )  must be Poissonian (see 
[ 5 ,  131). This is related to the fact that the localisation length remains finite for any 
finite value of k and, therefore, the relative number of overlapped EF in infinite 
momentum space vanishes. Nevertheless, if we are interested in level statistics of those 
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EF which are overlapped, if only partly, then we can find some repulsion of nearest 
levels (see also [13]). It is natural to expect the rate of repulsion to be dependent on 
the rate of overlapping of the EF chosen from the total (infinite) number of states. 

For the purpose of investigating the influence of localisation on statistical properties 
of quasi-energy spectra it is convenient to consider a model with a finite number N 
of levels: 

Here the finite unitary matrix U,,, determines evolution of any N-dimensional vector 
(Fourier transform of JI function) of the system. It has the symmetric form 

where the diagonal matrix GI,, corresponds to free rotation during a half period T/2: 

Gll.= exp(i( T/4)l2)SI,. 

and matrix B,,,,, describes the result of one kick: 
(7) 

2.rrz ). 1 2 .rrl 2.rr1 )exp( -ik cos 2~+1 
B,,,,, - - - 'yl (cos(n'- m') -- cos( n'+ m') - 

2 N + 1  ,=1 2 N + 1  . 2 N + 1  

This model (5)-(8) with a finite number of states can be regarded as the quantum 
analogue of classical standard mapping on the torus with closed momentum p and 
phase 8. The difference of (5)-(8) from the model investigated in [5-61 is that the 
matrix U,,, describes only odd states of the system (+( 8 )  = -+(-e)) .  

Such a model can be deduced from the model (2), (3) in the following way [5,12]. 
Let us first consider (2), (3) for rational values of 7 / 4 ~  = r /q  (with r, q integers). It 
corresponds to the so-called quantum resonance [23,24] for which all EF in a momen- 
tum representation are analogous to the Bloch states in a periodic crystal. Therefore, 
each EF is multiplied by phase factor exp(i8,) under the shift in period q. By selection 
of only periodic EF with 8, = 0 in the model (2), (3) we can construct the finite matrix 
of size q which describes the evolution of periodic (in momentum space) states [5,6]. 
The phase space of the corresponding classical model is closed in momentum p with 
the size 2 7 "  where m, = 2r comes from the periodicity in p. Then, selecting only odd 
states it is easy to pass to the matrix U,,, with the reduced size N = (q - 1)/2 (here q 
is an odd number). 

Our model (9, (6) can be, in principle, interpreted also as a model of some 
conservative system with a finite number of levels on the closed energy surface. 
Therefore, statistical properties of quantum chaos investigated here are typical also 
for autonomous systems with a chaotic counterpart in the classical limit. Similar 
models have also been considered in [ 14,251. 

3. Dimension of chaotic eigenstates: definition 

Recently it was shown [5,6] that under the conditions K >> 1 (strong classical chaos) 
and A = I D /  N >> 1 (delocalisation of all EF of the system) the quantum chaos in model 
(5)-(8) is maximal. It means that statistical properties of the quasi-energy spectrum 
and chaotic structure of the EF are maximal. Specifically, the level spacing distribution 
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P( s) for quasi-energies w of U,, is in excellent agreement with the dependence (1) 
for p = 1. Moreover, the distribution of the components of the EF in the unperturbed 
basis with a high accuracy corresponds to a microcanonical distribution of eigenvector 
components of finite random matrices [9]: 

As long as the matrix U,,, is unitary and symmetric the real and imaginary parts 
of its EF are equal to each other and equal to the EF of the real and imaginary part of 
U,,,. Therefore, the quantity 9, in (9) is either the real or imaginary part of the EF 

of the matrix U,,. Let us note that for N + 03, the microcanonical distribution (9) 
goes to a Gaussian one. It means that in the limit of large N >> 1 all EF of the system 
with a maximal quantum chaos are Gaussian random functions. 

In the opposite case, for h < l ,  distribution P ( s )  turns out to be intermediate 
between Wigner-Dyson (1) and Poissonian (see [5,12]) and the eigenvectors of U,, 
are random only on some localisation scale in momentum space. 

In what follows we shall introduce a new definition of localisation length of the 
EF insofar as relation (4) has sense only for the model (2), (3) with infinite momentum 
space (or, similarly, for the model (5)-(8) with ID << N). Unlike the traditional definition 
of localisation length as the inverse rate of decrease of amplitude of EF for n 3 *CO ( n  
is the number of unperturbed states) we determine 1 through the ‘entropy’ 2 of the 
EF (not to be confused with thermodynamic entropy): 

Here m stands for the individual eigenvector of matrix U,, (m = 1, .  . . , N). 

be found from (10) using (9): 
In the limiting case of the microcanonical distribution of Q,,, the entropy Xe‘,“ can 

where a is some constant 

with y being the Euler constant (y=0.577).  Now it can be seen that the quantity L, 

L, = exp(XC’) (13) 
means the effective number of components (P,,, with not too small values. As an 
example let us take the steady-state distribution w,, = 1/ N. Then the number L, is 
equal to the maximal dimension of the EF (L, = N ) .  In comparison, for microcanonical 
distribution (9) we can get from (lo), (11): 

L, = aN/2 .  (14) 
This means that in spite of the ergodicity of the EF ((vi,)) = 1 / N )  the fluctuations 

result in very small values w,,, = 0 for approximately half the components of qnm. This 
fact is related to the particular form of the distribution of w,,, which is the x2 
distribution with the divergence for w,, + 0. As a result, the probability density of EF 
turns out to be full of ‘holes’ both in momentum p and in ‘coordinate’ B space. 
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Numerical data show that for K = constant >> 1 the scale on which the EF can be 
considered random is less than the maximal dimension N and decreases with the 
quantum parameter k. Therefore, in accordance with (9)-( 13) the mean localisation 
length can be associated with the average dimension d of the EF and determined by 
the ‘entropy’ 

(15) 
2 

d = (d , )  = - (L,) = 2(exp( %‘$I)) d >> 1 
a 

where d is averaged over all eigenvectors of matrix U,,. 
In essence, relation (15) is a definition of both the mean localisation length and 

the dimension of chaotic EF. In the limit of maximal quantum chaos it gives d = N 
but for d << N numerical data show a good agreement with the usual definition of 
localisation length using the decay of EF on the ‘tails’ (see below). 

It should be pointed out that for d = N our matrix, in principle, is not a random 
one (it depends only on two dynamical parameters, K and k). Nevertheless, in this 
limiting case all statistical properties are very well described by random matrix theory 
(RMT). For d < N the situation is much more difficult because RMT is not applicable. 
It seems that eigenvectors of U,, with chaotic localised structure are isotropic only 
in some part of N-dimensional Hilbert space. It is interesting to see whether it is 
possible to develop a mathematical theory for such matrices. 

4. The main properties of localised chaotic states: numerical data 

We now investigate the dependence of dimension d on quantum parameter k in our 
model ( 5 ) - ( 8 ) ,  when the classical parameter K 2: 5 is large enough to provide strong 
classical chaos [21]. All semiclassical conditions are supposed to be fulfilled: N >> 1; 
k >> 1; T = 4 m / q  << 1; ( q  = 2 N +  1). The result for N = 398 appears in figure 1 where 

d 

0 0 
0 

0 20 40 60 
k’ 

I 
0 100 200 300 

k 

Figure 1. The mean localisation length (dimension d )  against quantum parameter k for 
the fixed value of the classical parameter K = 5 .  
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dimension d has been computed according to (10)-(15) with (P,, being the real part 
of all EF of matrix U,,,. 

It is interesting to compare dimension d(k) with localisation length ID (see (4)) 
for small values of d e  N. Numerical data for the free rotator model (2), ( 3 )  show 
[ 12,22,26] that localisation length measured by the decay rate of EF is equal to ZD = k2/4 
for K = 5 .  As a rough estimate, let us suppose EF to be of the form (on = 
Z-l’* exp(-ln - nol/l) without taking into account fluctuations of its amplitude. Here 
no is a centre of ‘gravity’ of the EF. Substituting this expression into (lo), (15) we 
have, for Ino/ << N, 

d =2el= 5.41 = 1.25k2 (16) 

while the fitted line in figure 1 (see insert) corresponds to d ~ 0 . 8 7  k2. This is quite a 
good correspondence of dimension d<< N to the common definition of localisation 
length. Nevertheless, further numerical experiments should be carried out not only in 
the region k >> 1 ;  i << d << N (see also [26]) but also for ka 1 ( d  a l) ,  which is slightly 
above the quantum stability border. 

A remarkable property of localised chaotic states is large fluctuations of localisation 
length d ,  of the individual EF. As an example, figure 2 represents localisation length 
distribution for three values of k-3.3; 21.1; 317 (respectively, r=95; 15; 1 for 
T = 4rr/ (2N + l)) ,  with the horizontal scale being the ratio of dimension d,  (localisa- 
tion length I%) to the total number of levels N. It is seen that the largest fluctuations 
correspond to the value d /  N = 0.5. In this case there are both strong localised states 
( d ,  << N )  and completely extended states ( d ,  = N). Nevertheless, in spite of these 

0 0.25 0.50 0.75 1.0 

d/N 

Figure 2. Three examples of the distribution of localisation length d,,, for individual EF 
with different values of k and fixed K = 5: ( a )  r = 1 ,  k = 317, p = 0.95; ( b )  r = 15, k = 21.1, 
p-0.50; (c) r=95, k - 3 . 3 ,  p-0.05. 
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fluctuations, the average dimension d can be described by a ‘good’ smooth dependence 
d ( k )  (see figure 1). 

Our approach to determine localisation length using ‘entropy’ of EF is closely 
associated with the simple idea of localisation length as an effective size on which the 
main probability of EF is concentrated. This is confirmed by the data in figure 3 where 
‘entropy’ localisation length d is plotted against ‘probability’ localisation length 1,. 
The latter have been computed as a number of unperturbed states occupied by the 
‘main’ part (95% probability) of the EF. There is a good correspondence between 
these two approaches in determining localisation length, especially when taking into 
account large fluctuations of individual EF. 

0 100 200 300 LOO 

1, 

Figure 3. Relation between ‘entropy’ localisation length (dimension d )  and ‘probability’ 
localisation length lw.  

5. Repulsion parameter p and analytical description of level spacing distribution 

We can see that in the case of strong classical chaos the most essential parameter of 
quantum localisation is the average dimension of the EF. Therefore, it is natural to 
expect that statistical properties of the quasi-energy spectrum also effectively depend 
on the parameter p = d /  N. In the limit d + N we have p + 1 which corresponds to 
the Wigner-Dyson distribution for P( s) with linear repulsion of neighbouring levels 
(confirmed numerically in [ 5 ] ) .  In the other limiting case of integrable systems, for 
p + 0, repulsion vanishes. 

It is our conjecture that this parameter p = d / N  is a repulsion parameter even in 
the intermediate case of 0 < p < 1. Then the problem of analytical description of the 
distribution P( s)  arises for the situation where all eigenstates are chaotic but not fully 
extended in the available phase space of the system. As far as we know, there is no 
good candidate for the analytical formula to describe this situation. For example, the 
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above-mentioned Berry-Robnik dependence [ 151 has been derived for a completely 
different case of divided phase space of a classical system. The fitting parameter in 
this dependence has the meaning of the measure of chaotic regions compared with 
stable ones and cannot be used for our case. Another type of distribution (Brody 
distribution [27]) is also unsuitable because it has no physical support. 

To obtain a proper analytical dependence of P ( s )  we turn to RMT [7-91. Our 
matrix U,,,,,, which has random properties in the limit case I,>>N (see [ 5 , 6 ] ) ,  is a 
unitary matrix. Therefore, it is natural to consider the variation of RMT for unitary 
random matrices, thoroughly developed by Dyson (see [7]). In his theory all statistical 
properties of spectra are determined by the joint distribution 

~ ( W I , .  . . , ON) = 00 n (e'"n-e'"mIP d u i , .  . . dWN (17) 
n # m  

of eigenangles wJ which are related to eigenvalues AJ = exp(ioJ) of a random unitary 
matrix of size N >> 1. Here parameter p has meaning only for three cases: p = 1 stands 
for the ensemble of symmetric matrices, p = 2 for non-symmetric matrices and p = 4 
for symplectic matrices. 

Starting from (17),  Dyson's approach gives the possibility to derive, in principle, 
the distribution for the spacing s between the neighbouring values U, located on the 
unit circle. This approach is based on the correspondence between the distribution of 
eigenangles U] of random unitary matrices and the steady-state distribution of two- 
dimensional Coulomb particles located on a ring (see [7]). In such a model p is an 
inverse temperature of Coulomb gas in the thermodynamic equilibrium. Therefore, in 
this physical analogy p varies from zero to infinity, but only for three values p = 1; 2; 4 
is there a rigorous mathematical correspondence to random matrices. For other values 
of p, this correspondence fails and the question arises whether it is possible to find 
out the real physical situation where statistical properties of spectra are described by 
(17) with other (non-integer) values of p. 

Our main conjecture is that the distribution (17) for non-integer p corresponds to 
quantum systems with a finite number of quasi-energy states under the condition that 
all eigenfunctions are chaotic and localised in the unperturbed basis. In our case we 
expect 0 s  p S 1 because both the system (2) and the model (5)-(8) are time-reversal 
invariant. Unfortunately, the question of deriving dependence F ( s )  from (17) is far 
from trivial. It should be noted that even in the case of p = 1; 2; 4 there is no correct 
analytical formula for P ( s ) .  It is known that the commonly used expression (1) is not 
related to RMT. Nevertheless in the main region 0 < s S 2, this approximate dependence 
turns out to be very close to the exact one which stems from (17) (the latter have been 
obtained numerically with the use of Mehta's method [7,8]). As long as the total 
number of levels does not, in practice, exceed several thousands, the Wigner-Dyson 
conjecture (1)  is quite a good approximation (see [7]). 

Here, as an approximate expression for P( s) in the region 0 4 p 4 2, the dependence 

is suggested. Two normalised parameters A and CO, in (18) are determined by the 
usual relations 

lom P ( s )  ds  = 1 low sP(s)  ds = 1 
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where s = 1 is the mean distance between neighbouring levels. The dependence (18) 
written in the form which approximately takes into account the asymptotic expression 
of P ( s )  for s + a3 has been obtained by Dyson [7]. On the other hand, it is quite close 
to (1) when p = 1; 2. In addition, for p = 0 the dependence (18) is Poissonian with 
the correct values of A and Co. In figure 4 the expressions (18) and ( l ) ,  together with 
the numerical data of RMT [7,8], are shown. It is seen that the deviation of (18) does 
not exceed 5 %  for the most essential region s = 1-2 (from a practical point of view). 
It means that the dependence (18) can be regarded as a good approximation of (1) if 
the total number N of levels does not exceed N = lo4. A much better correspondence 
occurs for p = 2 (see figure 5 ) .  Thus, our formula (18) is expected to be close to an 
exact (but unknown!) one, which stems from (17) with arbitrary values 0 d p d 2. 

0 1 2 3 4 

S 

Figure 4. Distribution of the spacing between the neighbouring quasi-energy levels for 
p = 1 ;  I, approximate Wigner-Dyson law ( 1 ) ;  11, dependence (18); circles, numerical data 
for the 'true' dependence P ( s )  in random matrix theory. 

1.0$ 

0 1 2 3 4 

S 

Figure 5. Analytical dependences P ( s )  for p = 2. Both approximate curves (1) and (18) 
practically coincide (the discrepancy for s = 1 does not exceed 0.7%). 
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150 

6, Numerical data for intermediate statistics (0 C /3 C 1) 

.- 

We now come back to our question of intermediate statistics P ( s )  for the model ( 5 ) - ( 8 )  
dependent on the localisation of quantum chaos. Let us compare numerical data for 
P ( s )  using the expression (18) where the parameter p is determined by the localisation 
length of chaotic localised EF through the expressions (IO), (15). For this the dimension 
d of the E F  of matrix U,, and spacing distribution P ( s )  for quasi-energies w have 
been computed independently for a wide range of quantum parameter k. In all cases 
the classical parameter K was fixed ( K  = 5 ) .  To improve the statistics, the summing 
of P ( s )  for four matrices U,, of size N = 398 have been performed, with slightly 
different values of k (Ak<< k). Quasi-energies wj have been found from the eigenvalues 
Aj  = exp(iwj) of matrix Unm. To compute dimension d we use one of four matrices 
U,,, averaging over all its EF. 

Typical examples of P ( s )  for three values k== 39.8; 21.1; 9.1 (respectively for r = 8; 
15; 35) are given in figure 6.  We can see good correspondence between numerical 
data and the dependence (18) with p = d / N .  The ,yZ3 value, for figure 6(a ,  b, c), is 
equal to 15.6; 27.2; 28.5; for 23 degrees of freedom with confidence levels 90%, 30% 
and 35%, respectively. More data are presented in figure 7 where it can be seen that 
the confidence level for all values of p = d / N  (circles) is not less than 5 % .  For the 
comparison, the x 2  values are also given in figure 7 for two different relations between 
parameter p in (18) and parameter d / N .  This was done as an additional control of 
our conjecture about linear dependence between the repulsion parameter p and the 

I5O t t 

4 
0 1 2 3 4 0 1 2 3 4 

s s 

i C 1  
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60 
0.1 Yo X 2  

5 %  

I I 
0 0.2 0.4 0.6 0.8 1.0 

d/N 

Figure 7. xza values for the comparison of numerical data with the dependence (18) are 
presented, with the total number of subintervals in s equal to 24. For p in (18) the circles 
are for = d / N, triangles for p = (d 1 N)’, crosses for p = ( d  / N)’”. xZa values correspond- 
ing to 0.1%; 5 % ;  30% confidence levels are also given. 

dimension d of chaotic EF. It is seen from figure 7 that linear dependence can be 
easily distinguished by the x 2  approach. 

A more accurate comparison of numerical data with the dependence (18) was now 
carried out with p as a fitting parameter. For this, the most suitable values of p (circles 
in figure 8) have been computed, which correspond to the minimum x 2  value, together 
with the deviations in p corresponding to the 5% confidence level. As a result, we 
can see that all the data are well described by (18) with linear dependence between p 

d / N  

Figure 8. The fitting parameter p in (18) as a function of relative dimension d / N  of the 
EF. Circles are values of p corresponding to the minimum value of x i s ;  the bars indicate 
the 5 %  confidence level. 
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and d/N.  It is clear from figure 8 that the spread in p is decreasing with p. This 
means that when the distribution P ( s )  is approaching a Poissonian form it is becoming 
more sensitive to the analytical form of P ( s ) .  

7. Level spacing distribution without time-reversal symmetry: discussion 

It was shown above that intermediate statistics P ( s )  for classically chaotic systems 
with quantum localisation of EF can be well approximated by the distribution (18) 
where p is the ratio of EF dimension to the total number N of states. Our numerical 
data are given for not too small values of p b 0.2. As for p << 1, computer experiments 
are very difficult because in this case it is necessary to increase the size of matrix U,,,,,. 
This relates not only to the fact that the quantum parameter k must exceed the Shuryak 
border [28] (k  >> k,,== 1; see [lo-121) but also to the condition d - k2 >> 1. The latter 
means that the dimension of the EF should be large enough for the EF to be regarded 
as chaotic on the localisation scale. 

It is important to note that the meaning of the parameter p can be generalised to 
the values p > 1. Indeed, for the unitary ensemble of random matrices ( p  = 2 in (1)) 
the maximal dimension of chaotic states is equal to 2N. This relates to the fact that 
each EF now has not N but 2 N  independent components (real and imaginary parts) 
in this case. Analogously, we have p = d /  N = 4 for the symplectic (see [7-91) ensemble 
as long as each eigenvector is determined by 4 N  independent random components. 

In particular, it can be concluded from the above that for systems which are not 
time-reversal invariant, the value of p is not restricted to p = 1. For such systems the 
limiting quantum chaos corresponds to /3 = 2 and statistical properties of spectra are 
described by RMT for the unitary ensemble (see examples in [5,25]). Then according 
to our approach, the spacing distribution P ( s )  in the case of intermediate statistics 
will be described by the same dependence (18) with p = d/N.  

For the preliminary test of this statement our model (5)-(8) was modified in such 
a way that the time-reversal invariance was broken (see [5] for details). As a result, 
the new matrix fi,,,,, turned out to be non-symmetrical. Therefore, real and imaginary 
parts of the EF in the unperturbed ( k = 0 )  basis must be independent. It was shown 
in [5] that this can be done by choosing (instead of cos 6 )  the perturbation with broken 
symmetry (under transformation B + - 0 )  and by adding to the unperturbed spectrum 
the linear dependence in momentum n. The latter modification is analogous, in essence, 
to switching on the magnetic field. 

As a result, the new matrix fi,,,,, takes the form 
I 1  NI 

U,, = x e x p [ $ i ~ ( n ~ + & ~ ) ]  C [ik c o s ( 2 ~ p / N + r ] ) ]  
p = - N ,  

where N = 2Nl + 1; n, m = -NI, . . . , NI. In the numerical simulation the values of 
parameters are equal to T = 47r x 16/ N, N = 199, 6 = 1.88; r] 2: 0.81. The strength of 
perturbation k was chosen in such a way that dimension d is to be equal to d = N. 
The quantity d was numerically found according to the formulae (lo), (15) with the 
only exception that the sum (10) runs over both real parts and imaginary parts of the 
EF. Therefore, the total number of components in the sum (10) is equal to 2 N  with 
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the usual normalisation 

n =1, .  . . , N 

n = N + 1, . . . , 2  N. 
y w n = l  
n = l  

It is clear that our new matrix fin,,, describes the evolution of any state of the system, 
unlike the matrix U,,,, which was obtained for odd states ( + ( e )  = -+(-e))  of the 
model (5)-(8). 

The result of this simulation is presented in figure 9. Here the numerical data are 
the sum over the distributions P ( s )  for eight matrices fin,,, with slightly different values 
of k in the interval 13.0 C k S 13.9. The matrix size is equal to N = 199; therefore, the 
total number of quasi-energy levels is equal to M = 8 x N = 1592. It is seen from figure 
9 that the correspondence between the numerical data and the dependence (18) is 
good. It should be pointed out that for the model (20), the distribution P ( s )  in figure 
9 is intermediate between Poissonian and Wigner-Dyson (1) with p = 2. In the limiting 
case of large lD >> N the distribution P ( s )  was shown numerically in [5] to be in very 
good correspondence with the prediction of RMT for a Gaussian unitary ensemble 
( p  = 2  in (1)). 

0 1 2 3 4 

S 

Figure 9. The intermediate statistic: of P ( s )  for the model (20) which is not time-reversal 
invariant. The _size of the matrix U,, is equal to N = 199; the quantum parameter k for 
eight matrices U,, changes in the interval k = 13.0-13.9 which corresponds, approximately, 
to d = N for the average dimension ofthe EF. The smooth curve is the analytical dependence 
(18) with p = 1. The xZ approach gives xi, -31 with =lo% confidence level. 
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